1. A regular tetrahedron has four vertices and any two of those vertices are at the same distance from each
other. The four faces of a regular tetrahedron are all equilateral triangles.

(a) (3 points) Sketch a regular tetrahedron.

(b) (3 points) What is the angle between any two edges of a regular tetrahedron?
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(¢) (4 points) The three vertices (0,0,0), (1,0,0), and (3, ‘/73,0) all lie in the x-y plane and are the
vertices of an equilateral triangle. Find a fourth vertex (z,y, z) that together with the three given

vertices forms a tetrahedron.
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2. Both parts of this question are about the same plane.

(a) (6 points) Find the equation of the plane containing the line x = 3t +2, y = —2t, z = —2t — 1 and
the point (—1,0, —3).
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(b) (4 points) Find the distance of the origin from the plane of part (a).
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3. Consider the space curve r(t) = —=i+ J5j + t’k.

(a) (6 points) Find the integral that gives the length of the curve from t = —2 to t = 2.
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(b) (2 points) Use the indefinite integral
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to evaluate the length in part (a).
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(¢) (2 points) What is the name of the space curve?
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4. The space curve r(t) = costi+sintj + tk is a helix. The space curve r(t) = cos2ti+sin2tj + 2tk is
the same helix parametrized differently, with ¢ replaced by 2¢.

(a) (2 points) Suppose the position vector of a particle is given by r(¢) = costi+ sintj + tk with ¢

being time. Find its speed ‘% .
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(b) (2 points) Suppose the position vector of a particle is given by r(t) = cos2ti + sin 2t j + 2t k with
t being time. Find its speed.

Ft) = (cos(at), Sm(at), 2t) 3 "?'u:) = (=25Wm0t), Lcesat), 2)

==

IO = | 49d0t) + 4edt) T4 =|202

(c) (3 points) Suppose a particle moves on the same helix with initial position r(0) =i+ 0j+ 0k with
speed equal to 3v/2. Find its position r(¢) as a function of time ¢.
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(d) (3 points) Suppose a particle moves on the same helix with initial position r(0) =i+ 0j+ 0k with
speed equal to v. Find its position r(¢) as a function of time t¢.
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5. The equation x® 4+ y* + 2° = 3ayz implicitly gives z as a function of x,y and is therefore a surface.
(a) (3 points) Find 2.
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(b) (3 points) Find g—;.
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(c) (4 points) The point (1,1, —2) lies on the surface. Find the equation of the plane that is tangent
to the surface at that point.
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6. Find the partial derivative % in both parts.

(a) (5 points) z = 22 + y*
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(b) (5 points) z = cos(u +v), u = 2?2 —y? v =2+ 1%
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7. Let ¢y be the line given by (x,y, z) = (2t,t, 2t) and let ¢y be the line given by (z,y,2) = (-t + 3, =2t —
3,2t + 3).

(a) (1 point) Find the cross-product of the vectors 2i + j + 2k and —i — 2j + 2k.
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(b) (3 points) Find a plane that contains ¢; whose normal vector is the same as the cross-product of
part (a).
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(c) (3 points) Similarly, find a plane that contains ¢, whose normal vector is the same as the cross-
product of part (a). Next, find the distance between the two planes.

-WQ ?\Q“e COV\'\T\TV\S E_ (.0‘) = (34-313)

S The plane 7o guen by [60x-3) —bty+3) ~3(2-3) =o|

The +wo planes ave \mm\\e\ 05 they

Wove the Same wnormal vectors.

3 The distone between wem  egquoals
the distance tvom Ew):O,—%, 3)

to the plane x-64-32=0 .
6X~69-33-23=0

The distonce between -the Fwo ?\avxes 3
|63 -6 (-»)-3-3+0| _
J6 ¢y +03Y




(d) (3 points) Find the point P on ¢; and the point @ on ¢, such that the distance PQ is minimum
and the same as the answer to part (c).
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8. Consider the paraboloid surface z = 2% + 3.

(a) (1 point) The base point of the surface is (0,0,0) and its axis (of symmetry) is the line (z,y,z) =
(0,0,t). Sketch the surface showing the base point and the axis.
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(b) (2 points) Now suppose the paraboloid is rotated so that the base point remains the base point
but the axis of symmetry is the line (z,y, z) = (6t,2t, 3t). Sketch the rotated paraboloid showing
the base point and the axis.
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(c) (7 points) Find the equation of the rotated paraboloid of part (b)
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